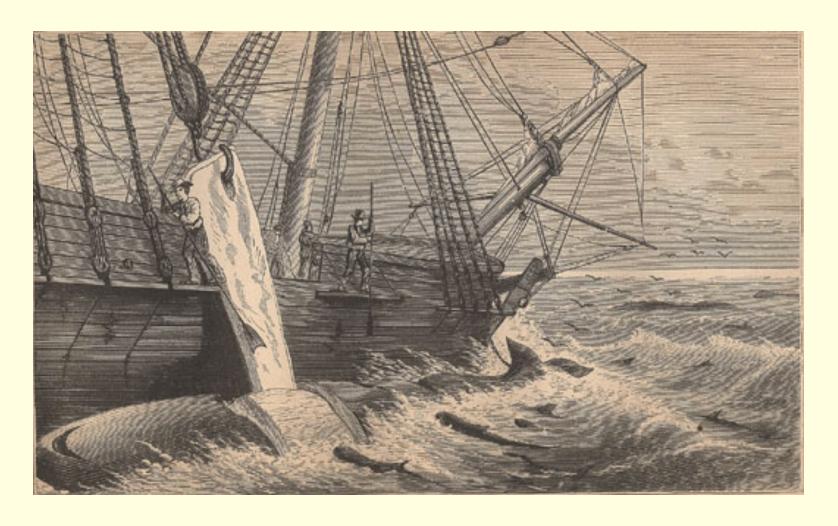
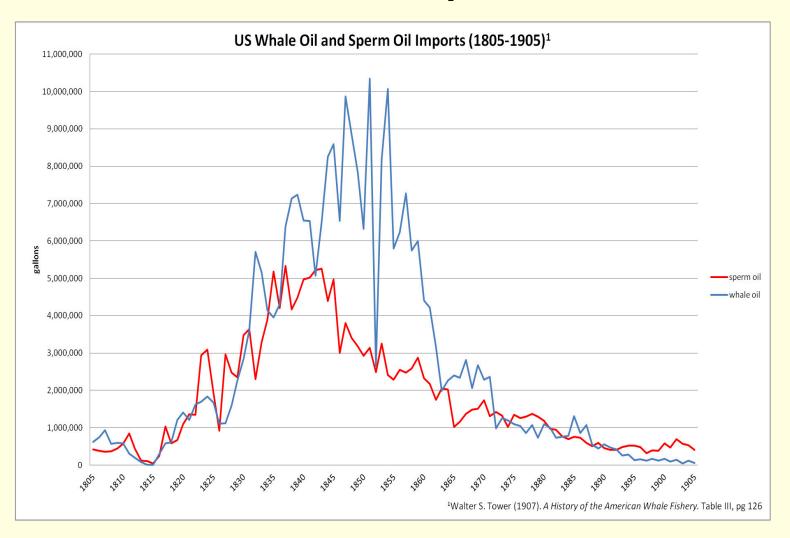

A Tale of Clock Oils

Ken Reindel NAWCC Chapter 15 March 22, 2014

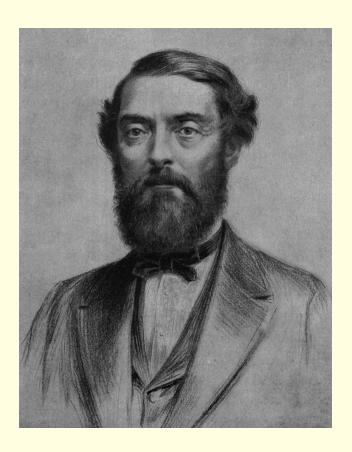
Agenda


- Short History of Oils
- Types of Oils
- 51 Years of Lubricating Clocks
- Summary and Recommendations

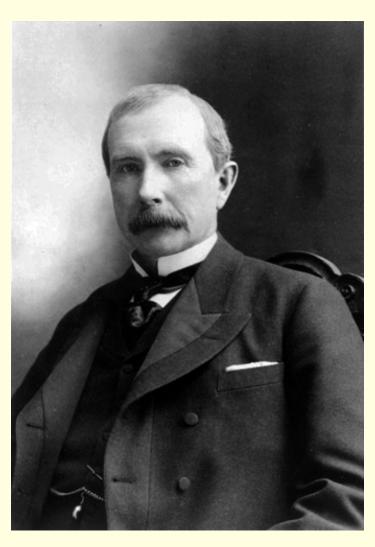
History of Clock Oils



- Boiled from whale blubber (16th Century)
 - Baleen, Sperm, Toothed whales
- Used for lubrication, lighting, soap
- Foul smell without hydrogenation (early 20th century)
- With hydrogenation, used for soaps and margarine
- Extremely stable
- Use declined due to alternatives and environmental concerns (early 1980s)

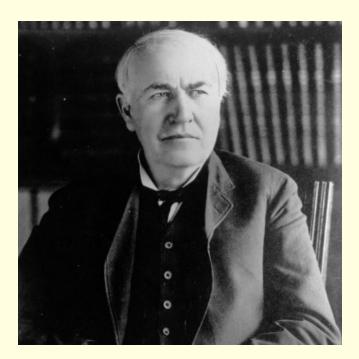

Harvesting the Blubber

Whale and Sperm Oil



Edwin Drake 1858

- First oil strike in USA
 - Titusville, PA
- Cast iron pipe driven by steam engine
- 25 barrels per day
- Refined into Kerosene
- Alternative to Whale oil
- Refined into lubricants and fuels later


John D. Rockefeller

- Standard Oil of Ohio
- Legendary Tycoon 1870-1897
- Created oil industry by integrating:
 - Drilling, Refining, Transporting
- Cleveland, Ohio major refining area
 - Ohio, Indiana, Pennsylvania, Virginia
- 1911: Standard Oil split
 - Anititrust decision by Supreme Court
- Great philanthropher from first paycheck

The Oil Industry Prevails

(and expands)

What is oil, chemically?

- Organic, complex chains of hydrocarbons
- Oil molecule is non-polar → slippery, non miscible with water
- Generally, double bonds → reactive (more electrons!)
- Oxygen included → esters → alcohol condensed with organic acid
- Esters → Frequently synthetic

Grades of Oils

- Group I and II: Derived from crude oil
- Group III Ultra-refined mineral oil made through hydrocracking
 - Sometimes called "synthetic" in North America (marketing)
- Group IV: True synthetic oils; Polyalphaolefin (PAO)
- Group V: Synthetic stocks other than PAO's; include esters and other compounds

Types of Oils

- Organic
 - Plants
 - Lipids
 - · Whale Oil
 - · Animal Fat based oils
- Mineral
 - Name is somewhat misnomer
 - · Crude oil and its refined components
 - Fossilized organic materials
- Synthetics
- Blends
 - Mixtures of the above

Clock oils can be any of the above

Synthetic Oils

- "Man Made" building blocks or Esters:
 - Group IV Polyalphaolefins
 - Group V Esters
- Fischer-Topsch process
 - Starts with CO, CO₂, Methane, etc.

- Can be molecular modifications of petroleum
 - · Can also be blends of true synthetics and mineral oils
- Originally developed in Germany, WWII
 - Cut off from crude oil

Synthetic Oils

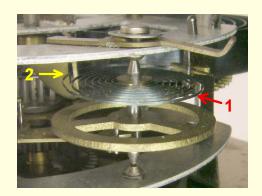
 Most commercial synthetics are blends of different building blocks, including mineral oil

Advantages:

- Better stability over time and temperature
 - e.g., resistant to sludging
- Free of hydrocarbons, sulfur, etc contaminants found in mineral oils
- More slippery

What do clock oils need to do?

- Provide separating film (eg, don't break down)
- Stay put, not run off (proper viscosity)
- 5-10 years without sludging, thickening or varnishing
- Don't discolor brass (green, brown)
- No evaporation
- Safe with lacquers


Clock Oil Challenges

- Graham Dead beat Escapements
- Lever Escapements—especially balance cups
- Main Wheel (and second wheel) Pivots
- Escape Wheel Pivots
- Mainsprings

51 Years of Clock Oils

- 3-in-1 Machine Oil
- Horolube 9-C
- Moebius 8030, 8031, and 8040
- Etsyntha 859
- Keystone Clock Pivot Oil
- Nye Traditional and Synthetic
- Molybdenum Disulphide based oils
- "Nanolube" Diamond ball bearing oils
- "Other"

3-in-1 Household Oil

- Used in my early days for small clocks
- Spindle (mineral) oil
- Citronella oil (perfumes, insect repellant)
- Corrosion inhibitor
- Low Viscosity (runs out)
- Foul smelling
- Sludging—Unknown
 - Thickens over time

NO LONGER USED

Horolube 9-C

- 1970s Vintage
- +Whale-oil based
 - May have been blend
- +Very stable
- +Stays put
- +Very good results
- Non-synthetic

NO LONGER AVAILABLE

Etsyntha 859

- Most expensive oil out there
 - 3.5ml is \$14.00
 - Compare to 20ml for \$17.50 for Moebius
- Claimed to be "compatible" with 'most' plastics--Don't believe it!
 - Melts lacquer on plates into sludge
- Vanishes in a few years from plates

USED A FEW TIMES AND ABANDONED

Moebius 8030, 8031, 8040

- Used for about 20 years
- + At first, this was a very nice oil!
 - Probably whale oil based initially
- Then, deteriorated over time
- Now, pivots sludge and turn green in 3-5 years
- Stains plates brown and green over time

WE NO LONGER USE THIS PRODUCT

Keystone Clock Pivot Oil

- Used 12 years for re-oiling
 - Somewhat thinner than ideal
- Included in our OK-1 Kit for a few years
- Seems to be mineral-oil based
- + Holds up over time
- Never observed any sludging, varnishing
- Never observed any staining
- Tendency to run, smear if over-oiled

NO LONGER USE IN OUR KIT

Keystone Mainspring Grease

- Used 15 years for large springs in barrels
 - Comes in 3 grades; prefer "Medium"
- Not sure what's in it.
- No indication that it's synthetic
- + Works ok but tends to run out and drip
- Don't like dark color
- Sludging--Unknown

NO LONGER USE

Nye Synthetic 140B

- + Used for 10 years now
- + Claimed to be synthetic
- + For lightweight applications
 - + Alarm escapements
 - + Carriage clock escapements
 - + Small movements
- + Still use for Telechron rotor lubrication
- + Never any sign of sludging or varnishing
- Will run out if over oiled (too thin for large clocks)

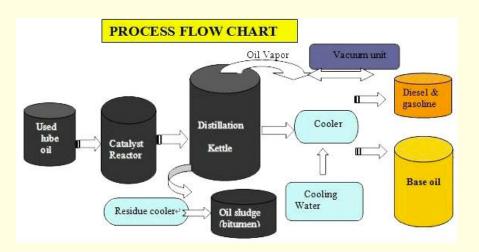
GREAT PRODUCT STILL IN OUR SHOP!

Molybdenum Disulfide Oils, Greases

- Light lubricants with additives
- Theory is "Micro particles" add slip
 - No data available
- True advantage uncertain for clocks
- Dirty product
- Oil needs to be mixed before use
- Will contaminate cleaning solution downstream

NEVER REALIZED ANY ADVANTAGE

Butterworth's Nanolube Clock Oil


- Another light lubricant with additives
- Genealogy of this oil unclear
 - · Who did the research, and for what?
- Much smaller particles, teflon slip
- Claim is PTFE particles are polarized
 - Isn't this anti-lubricating?
- Need to consider base lube + additive individually, then as a system
 - · Base lube is runny
 - · How do you qualify the system?

NO CLEAR ADVANTAGE, SOME RISK

Who is researching oils?

- WW Oil and Gas industry approaches \$10 Trillion (and growing)
- WW Automotive industry north of \$5 Trillion (and growing)
- Difficult for any other industry to compete

Automotive Lubricants

- Gearbox Lubricants
- Transmission Oils
- Engine Oils

Gearbox and Transmission Oils

- Sulfur additives—Bad!
 - Will react with brass
- Viscosity too heavy
 - Difficult to match to light loads in clocks

Engine Oils

- Available in broad range of viscosities
- Fully Synthetics well refined, long lasting
- No harmful additives vs. Brass, Bronze, Steel

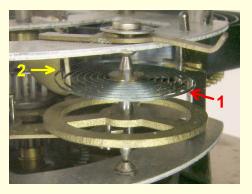
Of Oil, Oilers and Oil Sinks

by Steve Nelson (NAWCC) pp 76-80 January-February 2014

- This article recommends using 5W40
 - We recommend 0W40 for most pivots
- His research was independent of ours
- Results and recommendations virtually identical
- We've added recommendation of 10W60 for:
 - Main wheels and Mainsprings (large clocks)
 - Graham Dead Beat escapements (larger clocks)

Viscosities

Material	Viscosity in Centipoise @ 70F
Water	1
Milk	3
Nye Clock Oil 140B	20
Sperm Oil	52
Coconut Oil	55
Soap Solution	82
Mobil 1 0W-40	215
Mobil 1 5W-40	250
Mobil 1 10W-60	500
Honey	2000


Modified from Steve Nelson's article NAWCC Watch & Clock Jan-Feb 2014

Recommended Oiling Methodology

- Mobil 1 Synthetic 0W-40 for most pivots
- Mobil 1 Synthetic 10W-60 for:
 - Main Wheels
 - Mainsprings
 - Second Wheels
 - Graham Dead Beat Pallets

- Nye Synthetic 140B for:
 - Small pivots (<.015")
 - Balance Cups and Pivots
 - Lever Escape Wheels

Conclusions

- Many clock oils evaporate and leave no residue
- Some can attack lacquer
- Other clock oils thicken greatly and leave green sludge or stains
- Properly selected synthetic motor oil outperforms clock oils

Time for A Few More Tricks?

- Pendulum Crutch Pins
 - Super Lube Synthetic Grease
- Protecting Mainsprings
 - Boeshield T-9
 - 1 part with 2 parts mineral spirits
 - Also useful for quenching

Viscosity Experiment