Когда люди говорят о точности, они подразумевают отклонение хода часов от эталонного в течение некоторого периода времени. Для наручных механических часов приемлемым отклонением является -40/+60 секунд в сутки, а для кварцевых +/~20 секунд в месяц. Существует понятие «хронометр» — особо точные часы, чьи характеристики подтверждены циклом особых испытаний в специальной лаборатории. Механические хронометры имеют точность порядка -4/ +6 секунд в сутки, а особо точные кварцевые часы +/- 5 секунд в год.
Говоря о точности, на заводах и в ремонтных мастерских используют понятие «мгновенный ход» измерения отклонения хода часов в течение некоторого времени на специальном приборе. От чего зависит точность часов? Дело в том, что каждый тип часовых механизмов имеет свои особенности.
Точность механических балансовых часов
Точность хода механических часов задается узлом баланс-спираль и во многом зависит от конструкции и характеристик этого узла. В механических часах может быть разный по размерам и весу баланс, а также частота его колебаний. В разных конструкциях эта частота варьируется от 2,5 до 5 колебаний в секунду. Считается, что чем выше частота колебаний баланса, тем точнее могут идти часы. Аналогично, чем больше момент инерции баланса, тем выше точность часов. Соответственно конструкторы стремятся сделать момент инерции баланса выше, а для этого диаметр баланса — больше.
Точность механических часов тем хуже, чем меньше калибр механизма. Это нашло отражение и в стандарте — если для мужских часов с калибром механизма более 20 мм стандартная точность -20...+40 сек/сутки (по ГОСТу -40/+60 сек/сут), то для часов с калибром менее 20 мм (женские типа «Заря», «Чайка» и другие) -60/+85 сек/сут. Это связано с тем, что:
- при уменьшении размера механизма необходимо уменьшать и размер баланса, что сразу отрицательно сказывается на ходе часов;
- уменьшается размер заводной пружины. Уменьшение размеров приводит к уменьшению развиваемого пружиной момента, и, как следствие — к уменьшению энергии, получаемой балансом. Трение между деталями в механизме маленького размера остается почти таким же, как и в больших часах.
Факторы, от которых зависит точность механических часов:
1. Изменение температуры
Даже небольшое изменение температуры очень сильно влияет на точность балан¬совых механических часов. Такт при нагревании изменяется диаметр баланса (он становится больше) и, соответственно, меняется его момент инерции, к тому же изменяется длина и жесткость спирали. Мы получаем увеличение момента инерции баланса плюс уменьшение жесткости волоска. В результате меняется период колеба¬ний баланса и точность хода часов изменяется. Примерно в ЗО-х годах XX века были открыты материалы с низким коэффициентом температурного расширения и материалы, мало меняющие свою жесткость при изменении температуры. Использование их для изготовления баланса и волоска позволило сделать часы и недорогими, и достаточно точными.
2. Положение часов в пространстве
Это связано с влиянием силы тяжести на баланс часов. Разброс показателей точности часов в различных положениях зависит от их конструкции и, в еще большей степени — от тщательности изготовления. Так, одни и те же часы в положении «головкой вверх» могут отставать на 20 секунд в сутки, в положении «головкой вниз» — спешить на 40 секунд. Надпись «Unajusted» на механизме часов означает, что каких-либо специальных мер по минимизации разницы в показаниях в различных положениях не предпринималось. «Ajusted for 6 positions» — точность часов примерно одинакова в 6 положе¬ниях: циферблатом вверх, циферблатом вниз, метками «3, 6, 9 и 12 часов» вверх.
3. Качество изготовления и состояние механизма
Говоря об этом, прежде всего имеют в виду точность изготовления деталей часов, качество их обработки и их состояние, чистоту поверхности трибов и колес, чистоту обработки цапф осей и многие другие факторы. От каждого из них зависит, насколько высоко трение между деталями и каковы потери энергии в механизме часов.
4. Износ деталей механизма
Износ деталей механизма у механических часов достаточно велик. Причем раньше всего изнашиваются детали спускового механизма, которые отвечают за точность хода. Точность хода снижается и из-за загустения смазки.
5. Заведенная или «распущенная» пружина
Только что заведенная часовая пружина и уже раскрученная по-разному давят на стенки барабана. Точность хода часов с почти «разряженной» пружиной ниже, чем только что заведенных, По мере распускания пружины уменьшается импульс, передаваемый балансу часов, и уменьшается амплитуда его колебаний. Т.е. баланс поворачивается на меньший угол, часы начинают спешить.
Именно из-за того, что с распусканием пружины часы начинают спешить, связана разница в допустимых погрешностях хода часов: в «+» она всегда больше, чем в «-», например +40/-20 сек/сутки. Для компенсации этого эффекта существует устройство, названное улиткой, В часах с автоподзаводом, пружина которых фактически всегда находится на «взводе», влияние этого эффекта минимально — и точность их хода чуть выше, чем у «традиционных» механических часов. Если наручные часы начали «хронически» спешить либо отставать, это далеко не всегда означает поломку. Точность хода часов можно отрегулировать в мастерской, причем операция эта достаточно простая. В механических балансовых часах есть устройство, называемое «градусник», которое позволяет изме¬нять действующую длину вояоска и тем самым регулировать частоту колебаний системы баланс-спираль в пределах +/- 4...5 мин в сутки.
Если часы требуют более существенной корректировки точности хода, это является показателем неисправности и такие часы нужно ремонтировать, а не регулировать.
Точность маятниковых часов
Маятниковые часы потенциально намного точнее балансовых: точность лучших из них сопоставима с точностью кварцевых часов. Не случайно до изобретения атомных часов именно различные вариации маятниковых часов использовались в астрономических обсерваториях. Максимальная достигнутая точность астрономических часов — 0,0002 секунды в сутки. Однако астрономические часы и обычные ходики, несмотря на схожесть лежащей в их основе идеи, имеют между собой мало общего. Одним из отличий является то, что часы в обсер¬ваториях сконструированы так, чтобы максимально оградить механизм от внешних воздействий.
Факторы, от которых зависит точность маятниковых часов:
1. Изменение температуры
В маятниковых часах при изменении температуры удлиняется подвес (штанга) маятника, длина маятника увеличивается и изменяется период его колебаний. Для борьбы с этим используют устройство температурной компенсации, чаще всего так называемую решетку Грахама. Так, в дешевых моделях Herrnle маятник висит на одной палочке, а в более дорогих моделях используют маятник в виде решетки из желтых и белых прутьев. Это стальные и латунные стержни.Коэффициент температурного расширения металлов разный, и характеристики стержней подобраны так, что при изменении температуры длина маятника фактически не изменяется.
2. Давление воздуха
При изменении атмосферного давления происходят три вида изменений: изменяется сопротивление воздуха качанию маятника, изменяется масса воздуха, которую маят¬ник «носит» вместе с собой, и происходит «всплытие» линзы маятника. Но реально эти значения очень малы. Для борьбы с влиянием изменения давления на точность придумали устройство барометрической компенсации, но оно используется очень редко.
3.Способ подвеса гирь
В маятниковых часах можно встретить модели с цепным и тросовым подвесом гирь. Модели с тросовым подвесом дороже, и считается, что обладают более высокой точностью, В механизмах с цепным подвесом гири подвешены на шестеренку-звездочку, и когда очередное звено находит на звездочку или соскакивает с нее, происходит скачок, микроудар, который распространяется по всему механизму часов, нарушая, в том числе, равномерность колебаний маятника. В механизме с тросовым подвесом гирь такого явления нет.
Факторы, от которых зависит точность кварцевых часов:
1. Частота генератора
Стандартной для абсолютного большинства кварцевых часов является частота 32 кГц. В высокоточных часах применяются генераторы с частотой около 1 МГц, это позволяет достичь точности порядка 5 секунд в год. При этом такой генератор потребляет больше энергии, и если в обычных кварцевых часах батареи хватает на 2-4 года, то «мегагерцовые» часы требуют замены батареи каждый год (причем в них обычно используются литиевые батарейки гораздо большей, чем обычно, емкости). Компромиссом между обычными часами и «мегагерцовыми» являются модели, где генератор работает на частоте 144 кГц. При помощи ряда технических ухищрений в таких механизмах удается добиться точности порядка 20 секунд в год и низкого энергопотребления: от одной батарейки часы могут работать до 10 лет.
2. Изменение температуры
Точность кварцевых часов, так же как и часов других типов, меняется с изменением температуры. Но в любом случае они намного точнее, чем механические.
3. Старение кристалла кварца
Со временем кристалл кварца «стареет», и его резонансная частота меняется. Однако это изменение не является сильным.
В отличие от механических, большинство кварцевых часов не позволяет регулировать их точность хода — в этом просто нет необходимости. Однако в ряде кварцевых механизмов (обычно более дорогих) имеется подстроечный конденсатор, позволяющий регулировать точность хода часов. Наличие такого конденсатора несколько снижает надежность часов, в то же время такие механизмы более ремонтопригодны, т.к. допускают замену кварцевого резонатора.
Ряд кварцевых механизмов имеют модуль радиоконтроля.Такие часы улавливают эталонные сигналы точного времени, передаваемые специальным передатчиком (не нужно путать их с «бибиканьем» на обычных каналах радио), и автоматически настраиваются на точное время. Таким образом, показания этих часов всегда будут совпадать с точным временем.К сожалению, ближайший передатчик расположен в Германии, и на большей части России и Украины его сигналы не принимаются. Часы с радиоконтролем эффективны только в нескольких самых западных регионах России.